Large-scale climatic and geophysical controls on the leaf economics spectrum.
نویسندگان
چکیده
Leaf economics spectrum (LES) theory suggests a universal trade-off between resource acquisition and storage strategies in plants, expressed in relationships between foliar nitrogen (N) and phosphorus (P), leaf mass per area (LMA), and photosynthesis. However, how environmental conditions mediate LES trait interrelationships, particularly at large biospheric scales, remains unknown because of a lack of spatially explicit data, which ultimately limits our understanding of ecosystem processes, such as primary productivity and biogeochemical cycles. We used airborne imaging spectroscopy and geospatial modeling to generate, to our knowledge, the first biospheric maps of LES traits, here centered on 76 million ha of Andean and Amazonian forest, to assess climatic and geophysical determinants of LES traits and their interrelationships. Elevation and substrate were codominant drivers of leaf trait distributions. Multiple additional climatic and geophysical factors were secondary determinants of plant traits. Anticorrelations between N and LMA followed general LES theory, but topo-edaphic conditions strongly mediated and, at times, eliminated this classic relationship. We found no evidence for simple P-LMA or N-P trade-offs in forest canopies; rather, we mapped a continuum of N-P-LMA interactions that are sensitive to elevation and temperature. Our results reveal nested climatic and geophysical filtering of LES traits and their interrelationships, with important implications for predictions of forest productivity and acclimation to rapid climate change.
منابع مشابه
Coordination and Determinants of Leaf Community Economics Spectrum for Canopy Trees and Shrubs in a Temperate Forest in Northeastern China
Upscaling the leaf economics spectrum (LES) from the species level to community level is an important step to understand how assemblages are constructed based on functional traits and how these coordinated traits for a community respond to the environmental gradients and climate change. In a 9-ha temperate forest dynamics plot located in northeastern China, we collected four LES traits and thre...
متن کاملNovel evidence for within-species leaf economics spectrum at multiple spatial scales
Leaf economics spectrum (LES), characterizing covariation among a suite of leaf traits relevant to carbon and nutrient economics, has been examined largely among species but hardly within species. In addition, very little attempt has been made to examine whether the existence of LES depends on spatial scales. To address these questions, we quantified the variation and covariation of four leaf e...
متن کاملThe Effect of Large-Scale Climatic Signals on Rainfall in Mazandaran Province
Rainfall prognosis plays an important role in drought management and planning of drinking water and agricultural water resources. Also, Future policies can be tailored to optimize spending and maximum productivity. In this study, the effect of large-scale climatic signals on rainfall in Mazandaran province was investigated. The first, the effect of climatic signals on precipitation simultan...
متن کاملAn evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants
In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the ...
متن کاملClimatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments
Carbon (C) and nitrogen (N) cycling under future climate change is associated with large uncertainties in litter decomposition and the turnover of soil C and N. In addition, future conditions (especially altered precipitation regimes and warming) are expected to result in changes in vegetation composition, and accordingly in litter species and chemical composition, but it is unclear how such ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 28 شماره
صفحات -
تاریخ انتشار 2016